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ABSTRACT 

A typical Air Force base will produce several thousand gallons per year of used turbine engine lubricants 
(1-5). The potential for contamination of the collected lubricants, particularly with halogenated 
compounds such as degreasing solvents and other fluids, reduces the effectiveness of a previously 
developed reclamation process, In this project, the feasibility of using two different thermalIFT-IR 
analysis methods in combination with advanced data analysis techniques to detect contamination in used 
turbine engine lubricants was investigated. The first method, TGIFT-IR combined with advanced data 
analysis routines, was shown to be capable of detecting the presence of several different types of 
contaminants in synthetic lubricants at  concentrations of about 5%. It  was demonstrated that data 
analysis routines based on factor analysis (SIMCA) and neural networks could be used for identifying 
the presence of a contaminant. The second method, TGlsecondary oxidation/FT-IR, was developed 
specifically for detecting trace levels of chlorinated contaminants in lubricants. Optimization of this 
method using existing instrumentation led to a detection limit of about 300 ppm (wlw) organic chlorine 
in the lubricant. Further improvements in hardware and software components could lead to detection 
limits o f 4 0  ppm. This instrumentation could also be used to characterize used motor oils, cooking oils 
or pyrolysis oils. 

INTRODUCTION , 
The Dalton Process is a proprietary process for reclaiming synthetic ester based turbine lubricants (MIL- 
L-7808 and MIL-L-23699) for reuse (l,3,4). Under controlled collection of the used lubricants, this 
process has been shown to give as high as 95% yield of virgin lubricant (4). However, contamination of 
the used lubricants greatly reduces the yield of the reclamation process, and since supervised collection 
of used lubricants is  not feasible, methods are required to rapidly determine the presence of unacceptable 
levels of contamination. Likely contaminants are volatile hydrocarbons in the form of kerosene type 
turbine fuels, domestic paraffins, petroleum naphthas, and chlorinated degreasing agents such as 
trichloroethylene. Previously used methods of identifying contaminated lubricant samples involved 
classifying the samples on the basis of appearance and odor (normal or abnormal), and subjecting the 
samples to a series of analytical tests in order to determine parameters such as volatile contaminant 
content, volatile hydrocarbon content, mineral oil content, and foaming propensity (3). The results of 
these analyses were used to specify whether a used lubricant sample was suitable for reclamation, A 
more rapid and objective method of classifying used lubricants and related materials is needed. 
Thermogravimetric (TG) analysis combined with Fourier Transform Infrared (FT-IR) analysis of evolved 
products has been used at Advanced Fuel Research, Inc. (AFR) and elsewhere for characterization of a 
variety of hydrocarbon materials (6,7). The objective of the current study was to investigate the 
application of TG-FTIR methods for the evaluation of lubricant contamination. 

The successful development of a TG-FTIR based lubricant evaluation instrument would allow non- 
technical Air Force personnel to rapidly and reproducibly determine whether used lubricants are suitable 
for reclamation or reuse. This type of instrumentation would also find several uses in the commercial 
sector. These include analysis of used motor oils and of oils produced from post-consumer plastics. The 
processing of corn oil and conon seed oil often results in the contamination of residual "soapstock" with 
chlorinated hydrocarbons, which prevents recovery of the useable oil through acidulation. The recovery 
of useable motor oil by supercritical fluid extraction is currently being evaluated. The value of the 
recovered oil is directly related to the amount of residual organochlorine in the extract. 

EXPERIMENTAL 

Sample Selection and Preparation 

The Air Force provided two types of synthetic turbine lubricants (MIL-L-7808 and MIL-L-23699) from 
two different sources (Mobil and Hatco). The contaminants of primary interest were halogenated 
compounds, therefore, three chlorinated compounds were selected as representative contaminants for 
this work: trichloroethylene (TCE), dichloromethane, and ortho-dichlorobenzene (0-DCB). Other 
contaminants of interest included fluids that could routinely be found at an Air Force base and could 
potentially contaminate the used lubricants. A set of representative fluids was collected from commercial 
sources. These included methanol, motor oil (Castrol GTX IOW30), hydraulic jack oil (Gold Eagle), 
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brake fluid (Prestone), turbine fuel (Jet A), diffusion pump silicone oil, and Dow-Corning silicone oil 
(DC-200). The primary constituents of these fluids are given in Table I .  

Table 1. List of the lubricants and contaminants analyzed. 

I I 
Type of Fluid Primary Constituents 

MIL-L-7808. MIL-L-23699 OOIVOI esters I 
motor oil, hydraulic oil I mineral oils 

brake fluid polyalkylene glycol ethers I 
DC-200 silicone oil I Dolvdimethvlsiloxane II 

A preliminary spectral analysis revealed that the MIL-L-7808 and MIL-L-23699 lubricants were quite 
similar. Consequently, further study was limited to the Mobil MIL-L-23699 lubricant. The samples 
analyzed included the pure lubricant, the pure "contaminants," and the lubricant spiked with a known 
amount of a given contaminant, The spiked samples were prepared by pipetting the required volume of 
the contaminant into a graduated cylinder and topping off with the lubricant. In order to minimize errors 
due to loss of volatile components, each sample was prepared immediately prior to analysis. 

Lubricant Analysis Studies 

TGIFT-IR Instrument - The combined thermalIFT-IR analysis technique is an extension of the 
TGIFT-IR (thermogravimetric analysis with FT-IR analysis of the evolved species) instrumentation 
developed by AFR and sold commercially by Bomem, Inc. as the "TG/Plus". The details of the 
TC/FT-IR method and instrumentation have been described previously in the literature (6-8), but a brief 
description will be given here. The apparatus, illustrated schematically in Figure I ,  consists of a sample 
pan suspended from a balance within a furnace. A< the sample is heated, the evolving volatile products 
are carried out of the furnace by an inert gas stream directly into a 5-cm diameter multi-pass gas cell 
(heated to 1 S O  "C) for analysis by FT-IR. Spectra are obtained at specified time intervals in order to 
quantitatively determine the evolution rate and composition of the evolved products. The sample can be 
subjected to programmed temperature ramp rates between 3 'Clmin and 100 'Clsec, with a temperature 
range of20 to 1000 'C. The system monitors the time dependent evolution of specific gases, the heavy 
liquid evolution rate and its infrared spectrum with identifiable bands from the functional groups, the 
mass loss during the run, and the mass of the non-volatile residue remaining at the end of the run. An 
analysis of C, H, N and S in the residue can be obtained at the end of the pyrolysis experiment by 
introducing oxygen and analyzing the combustion products. 

T G m - I R  analysis of lubricant samples - Two specific problems were encountered during the 
TGIFT-IR analysis of the synthetic lubricant samples (9). It was found that the lubricant samples 
volatilized very rapidly, thus resulting in a high concentration ofaerosol in the FT-IR gas cell. The high 
aerosol concentration resulted in significant scattering, and therefore the spectra appeared to be distorted. 
Additionally, the sample condensed on the quartz tube between the furnace and the flow cell, and then 
revolatilized as the furnace reached a higher temperature. This limited the ability to correlate between 
the FT-IR data and the TC balance data. A method was developed that would result in slower evolution 
ofthe sample in order to improve the results. The lubricant was adsorbed onto pre-pyrolyzed sand and 
was crimped in a stainless steel boat. This was found to significantly slow the rate of evolution of the 
lubricant, and also limited the condensation of evolved products. 

Using this sample introduction method, several samples were run in the standard TGiFT-IR mode using 
a temperature profile with a ramp rate of 30'C/min and a sample size of about 10 mg. The samples 
included the Mobil23699 lubricant, the contaminants listed in Table I ,  and the lubricant spiked with the 
contaminants (usually at a concentration of 5%). The spectra obtained during the runs were then 
converted to a format compatible with Spectra Calc data processing software (Galactic Industries, Salem, 
NH) for further analysis. 

TGIsecondary oxidat iom-IR analysis of lubricant samples - TCiFT-IR with secondary oxidation 
or pyrolysis allows the evolved species to be oxidized or further pyrolyzed before passing into the FT-IR 
gas cell. The secondary oxidization unit consists of a quartz tube through which the evolved species flow 
prior to entering the gas cell. The tube houses a resistive platinum element which is used to heat the 
evolved species to 800-900 'C. A 15 mUmin flow of preheated gas is introduced just prior to the heater; 
helium is used for the secondary pyrolysis mode, and oxygen is used for the secondary oxidation mode. 
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RESULTS AND DISCUSSION 

Detection of General Contamination in Synthetic Lubricants 

SIMCA analysis for contaminants - In the development of a methodology to detect contamination in 
used turbine engine lubricants, the data analysis routine must be designed to answer specific questions. 
If specific contaminants are likely to be encountered, for example, silicone oil, then one could ask "Is 
there any silicone oil in the lubricant?" Then a spectral analysis routine could be developed to look for 
the IR bands characteristic of silicone. The question being asked in this case is more general; "Is there 
anything out of the ordinary in the lubricant?" In this case the spectral analysis routine must be more 
general, and should be capable of not only identifying IR bands that do not arise from the lubricah, but 
also differences in the relative intensities of bands that might also indicate the presence of a contaminant. 
A discriminant analysis technique based on principal components analysis (PCA) was applied to the data 
obtained in order to detect the presence of an unspecified contaminant. 

Several studies have employed PCA, also known as factor analysis, in the development of discriminant 
algorithms, Although PCA and its applications have been thoroughly described in the literature (1  0,l I), 
a brief discussion will be given with an emphasis on its role in discriminant analysis techniques. PCA 
involves decomposing the original data matrix of n spectra by rn measurements (or wavelengths) into a 
matrix of scores, and a matrix of factors, as given by: X = SF f E; where X is the mean-centered data 
matrix, S is the n by a matrix of scores, F is the a by m matrix of factors, and the decomposition was 
carried out to a factors. E is an n by rn matrix that contains the residual values for each spectrum at each 
measurement. The factors are linear combinations of the original measurements and are chosen 
sequentially to represent the directions of maximum variance in the data set. Each spectrum in the data 
matrix has a set of scores that indicate the amount of each factor required to represent the initial spectrum. 
Although the decomposition can be carried out to use all of the degrees of freedom available, usually the 
significant variance in the data set can be represented by a smaller number of factors, and any further 
factors represent only random variations (noise). After decomposition, each of the n spectra in the 
training set can be described by the set of a scores instead of rn measurements (usually with &+I). This 
not only reduces the dimensionality of the data set, but also improves the quality of the data since some 
of the noise is excluded from the primary set of factors. 

Malinowski has discussed the determination of the optimum number of factors, a, that are needed to 
accurately represent the data matrix (IZ,l3). He showed that, for a data matrix that is factor analyzable, 
there exists a primary set of factors that consists of a mixture of meaningful information and error, and 
a secondary set of factors that consists of pure error, or noise. Since it iqthe primary set that is of use in 
chemical analysis, rejection of the secondary set of factors will actually lead to an improvement of the 
raw data set. The problem lies in deciding where to separate the factors into primary and secondary sets. 
For multivariate quantitative calibration (e.& partial least squares), the dependent variables can be used 
to monitor the progress of the decomposition. PCA decomposition, however, does not rely on dependent 
variables; the factors are selected solely on the basis of the variance within the data matrix. Malinowski 
derived several indicator functions which monitor the error via the eigenvalues associated with the factors 
( I  3). The eigenvalues give a measure of the amount of variance represented by each factor. The number 
of primary factors can be determined by starting with the least significant factor, and working backwards, 
until the point where the eigenvalues begin to represent more than the known experimental error. The 
factors beyond this point can be taken to be members of the primary set. 

Once the training set data matrix has been decomposed by PCA, the scores can be used to develop a 
discriminant algorithm, similar to the way in which individual absorbance values can be used. Factorial 
discriminant analysis (FDA), which uses linear discriminating functions, has been demonstrated for 
several applications using NIR and mid-IR spectra (14-16). FDA uses the primary set of factors to define 
the space occupied by the training set. An alternative method, called soft independent modeling of class 
analogy (SIMCA), employs the information contained in the secondary set of factors ( I  7). In SIMCA, 
the spectrum is reconstructed using the primary set of factors, and the residual spectrum is computed as 
the difference between the original and the reconstructed spectra. This is identical to computing the 
residual spectrum using the secondary set of factors but eliminates roundoff errors that can result from 
the small values in the secondary factors. The residual variance for a given spectrum is then computed 
as the sum of the squares of the values in the residual spectrum. An F-test can then be used to compare 
the residual variance for an unknown to the residual variances for the training set in order to statistically 
determine ifthe unknown is significantly different from the training set. Although FDA and SIMCA both 
employ PCA, the basic concept of the two techniques is quite different. FDA compares samples in a 
space that represents the significant variance ofthe training set, while SIMCA compares in the remaining 
orthogonal space. Van der Voet et al. have described these two spaces as inside-model space (IMS) and 
outside-model space (OMS), respectively (18). Both methods have certain merits, but the two are 
certainly suited to different types of applications. For example, FDA is best suited to an application that 
would discriminate against known sources of variation. This allows the PCA to accurately represent the 
space in which the variations will occur. SIMCA however is more suited to identify variations that are 
quite different from the inherent variance of the training set. The work of Gemperline et 01. provides a 
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good example ofthis (19). Using SIMCA they successfully discriminated adulterated pharmaceutical raw 
materials from training sets of pure materials based on NIR reflectance spectra. 

The data that are obtained during a TGffT-IR run differ somewhat from the data typically used in 
discriminant analysis. FT-IR spectra are measured as the components of the sample evolve, and therefore 
spectra obtained during the run can vary widely. Therefore, discriminant analysis in the IMS will not be 
very useful since the variations in the factor space for an uncontaminated sample will be quite large. 
However, if the primary factors accurately represent the species evolving from the uncontaminated 
lubricant, then the presence ofcontaminants in a lubricant should result in evolving species that spectrally 
fall outside of the IMS defined for the uncontaminated lubricant. In this case, a discriminant analysis 
routine that analyzes the OMS (such as SIMCA) should be capable of detecting the presence of a 
contaminant, It is important to note that this approach requires that the contaminant produces evolving 
species that are spectrally different from the species evolving from the uncontaminated lubricant. The 
magnitude of required spectral difference is dependent upon the implementation of the discriminant 
algorithm, and spectral pretreatment will be particularly important. 

SIMCA was evaluated as a method of detecting contamination in used synthetic lubricants on the basis 
of the data collected during a standard TG/FT-IR analysis (no postoxidizer). The spectra obtained during 
a run of an uncontaminated lubricant were used as the training set. First derivative spectra were used in 
order to eliminate the effects of baseline variations resulting from scattering. After selection of the 
spectral region of interest, the mean-centered training set was decomposed, and the number of factors in 
the primary set was determined using Malinowski's IND function (13). The residual variance was then 
computed for each spectrum in the training set and for all the spectra obtained from the runs of all the 
other samples, including the uncontaminated lubricant, various pure contaminants, and various 
"contaminated" lubricants. The residual variance for each spectrum, and the residual variance for the 
training set, were then used to compute the F-statistic using the approach outlined by Gemperline et al., 
( I  9). Gemperline classified samples as members if F was below the 95% level, as non-members i f F  was 
above the 99% level, and as undecided if F was between the 95% and 99% levels. 

An example of the results of the factor analysis is shown in Figure 2. Figure 2a shows a plot of the 
spectra obtained for an uncontaminated lubricant and the residual spectra that result from projecting the 
spectra onto the primary set of factors. In Figure 2b, the spectra and residual spectra are shown for a 
lubricant sample contaminated with 5% polydimethylsiloxane. The large features present in the residuals 
result from spectral features due to the contaminant. Since these features are of larger magnitude than can 
be attributed to noise, this sample is identified as containing a contaminant. Several spectral regions were 
used to develop discriminant analysis routines, and the best general results were obtained using a region 
containing 4000-2450 and 2250-890 cm-'. The 2450-2250 cm-l region was excluded in order to reduce 
the effects of variable CO, evolution profiles, and the region below 890 cm'l was excluded due to the 
presence of large noise spikes. These two regions were found to adversely affect the performance of the 
discriminant routines. 

In Figure 3, the F-values are plotted for lubricant samples contaminated with several fluids. The samples 
with 5% silicone (PDMS) oil and 5% brake fluid are easily identified as contaminated, but the samples 
with S%jet fuel, 5% motor oil, and 5% hydraulic oil all fell in the region where no decision can be made. 
This can be explained by the fact that the silicone oil and the brake fluid both have unique spectral bands 
that result in significant contributions to the residual spectrum, while the spectra ofthe other samples only 
exhibit bands due to C-H vibrational modes which are also present in the lubricant. Since these samples 
are only present at a concentration of 5% the contribution to the residual spectrum is small. This is 
verified by the fact that the sample with 30% hydraulic oil is identified as contaminated. In future work, 
additional spectral pretreatment methods will be investigated in order to magnify the spectral differences 
between the lubricant and these types ofcontaminants. It has been demonstrated by Hasenoerhl et al. (20) 
that pretreatment routines such as variance scaling and feature weighting can vastly improve the 
performance of PCA-based discriminant analysis routines. 

The F-values were also plotted for another uncontaminated lubricant sample and samples contaminated 
with 5% methanol, 5% dichloromethane, and 5% trichloroethylene (TCE) (9). The discriminant analysis 
routine performed well for the uncontaminated sample and the methanol-contaminated sample. The two 
samples contaminated with chlorinated species were not detected as contaminated. This is due in part to 
the fact that the spectral region characteristic of C-CI vibrational modes was excluded in order to limit 
the contribution of extraneous noise spikes. Results from analyses including this spectral region are poor 
due to the presence of these noise spikes, but do indicate that chlorinated contaminants can be detected 
at relatively high concentrations. As discussed below, much more sensitive detection of chlorinated 
contaminants can be achieved by using secondary oxidation to convert organic chlorine to HCI. 

Artificial neural network analysis for contaminants - In the past decade, significant effort has been 
made to develop computing strategies that simulate biological systems. The resulting artificial neural 
networks (ANN) are grossly simple in comparison to biological networks, but are well suited for 
performing tasks such as pattern recognition, cost minimization, etc. (21). A typical ANN is made up 
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of three layers of processing units (nodes) and weighted connections between the layers of nodes. The 
input data is'intrcduced at the input layer and is fed to the hidden layer through the weighted connections. 
Each node of the hidden layer sums its inputs and then applies an activation function to compute its 
output. The outputs of the hidden layer are then processed by the output layer, and their outputs are given 
as the output of the ANN. The function of the network is determined by the activation functions applied 
by the nodes and by the weights of the connections between the nodes. The weights can be strong or 
weak, and positive (excitatory) or negative (inhibitory). Typical activation functions are linear, step, and 
sigmoidal. Once the configuration of the ANN is defined for a given application, and the appropriate 
activation functions are selected, a network must be trained to perform the desired task. This is analogous 
to "learning" in a biological system. The usual method involves introducing training data to the ANN 
and comparing the output of the network to the correct or desired output. The error is then propagated 
back through the network in order to adjust the weights. This process is repeated until the error level falls 
below an acceptable level. 

Recent applications of ANN technology to infrared spectral data fall into two primary classes: I )  
multivariate quantitative analysis, and 2) classification. The primary advantage of ANNs for the 
development of quantitative models lies in the inherent capability to model nonlinearity. Classification 
networks applied to spectral data take advantage of the capability of ANNs to handle complex pattern 
recognition problems. Expert systems have been developed which employ ANNs to determine the 
functional groups present in a compound on the basis of its infrared spectrum (22). More specific 
classification networks have also been developed. Examples include sorting plastics encountered at a 
recycling plant based on their infrared spectra (23). and classifying woods as either hardwoods or 
softwoods on the basis of their FT-Raman spectra (24). These results are very promising and are 
indicative ofthe potential of using ANNs with spectral data to develop powerful classification techniques. 

In order to investigate the potential of using a classification network to detect the presence of 
contaminants in synthetic lubricants, several networks were trained to recognize the presence of. 
chlorinated solvents in the evolved species from a TGIFT-IR run. Training of the networks involved 
presenting examples of spectra from uncontaminated and contaminated runs. In order to provide a more 
general set of "contaminated" spectra, library spectra of dichloromethane and trichloroethylene (TCE) 
were added to the spectra obtained from the uncontaminated run. 

Networks were developed and trained using the Neuralworks ANN development package Weural Ware, 
Pittsburgh, PA) in conjunction with custom C routines for data preprocessing and presentation. The 
network was trained using spectra from a TGRT-IR run for an uncontaminated sample and spectra from 
the same run artificially spiked with library spectra. This was accomplished by writing a C program that 
presented either a spiked or unspiked spectrum to the network during training. The program was 
interfaced directly to the ANN development software in order to allow computation of new spiked spectra 
on the fly during training. At the beginning of each presentation, the program randomly chooses to 
present either a spiked or unspiked spectrum. If a spiked spectrum is to be presented, then a random 
fraction of a library spectrum is added to a randomly selected spectrum from the TGIFT-IR run. This 
presentation method allowed the training data to represent a large range of potential contamination 
conditions. Before presentation to the network, spectra were preprocessed with a Fourier filter routine 
to remove low frequency baseline variations and some of the high frequency noise, and the spectra were 
then normalized to unit vector length in order to give all spectra equal importance. 

Figure 4 shows the prediction results from a network trained as described above. A network output of 
1.0 indicates the evolution of a contaminant, and an output of -1.0 indicates that no contaminant is 
evolving. Figure 4a is the result for an uncontaminated lubricant run. While this result shows excellent 
prediction, this is the same data used to train the network, and therefore does not significantly 
demonstrate generalization. In Figure 4b, the result is shown for a TGIFT-IR run of a lubricant 
contaminated with TCE: The TCE evolving from 1-8 minutes is clearly identified as a contaminant, and 
the remainder ofthe run is accurately identified as uncontaminated. This result clearly demonstrates both 
the ability of the network to detect contamination and the ability of the network to generalize, i.e., 
accurately predict the uncontaminated portion of the run. The plot shown in Figure 4c shows the result 
for a TGIFT-IR run of a lubricant contaminated with dichloromethane. While the network clearly 
identified the contaminant evolving from 1-10 minutes, it did not successfully predict the absence of 
contaminant during the later part of the run (45-70 minutes). This indicates that the network may 
produce false positives in the prediction of contamination. 

Continuation of ANN development in future work will address the problem observed in Figure 4c. 
Further investigation of preprocessing routines should provide a solution to this problem. Additionally, 
other ANN architectures will be investigated. While the networks developed to date do not perform as 
well as desired, the results discussed above are promising, and indicate that further investigation may 
provide a powerful methodology for detecting contamination in synthetic lubricants. 
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SUMMARY AND CONCLUSIONS 

In this work, the feasibility o f  using two novel thermal/FT-IR analysis methods in combination with 
advanced data analysis techniques to detect contamination in used turbine engine lubricants was 
demonstrated. The first method, TGffT-IR combined with advanced data analysis routines, was shown 
to be capable of detecting the presence of different types o f  contaminants in synthetic lubricants at 
concentrations of about S%, and this sensitivity could probably be increased to about I %  with software 
and hardware improvements. It was demonstrated that data analysis routines based on factor analysis 
(SIMCA) and neural networks could be used for identifying the presence of a contaminant. The second 
method, TGkecondary oxidation/FT-IR, was developed specifically for detecting trace levels of 
chlorinated contaminants in lubricants. Optimization o f  this technique using existing instrumentation led 
toa detection limit ofabout 300 ppm (w/w) organic chlorine in the lubricant. Further improvements in 
the hardware and software components could lead to detection limits of 4 0  ppm. 
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4 7 %  Computer 

Figure I. Schematic diagram of the standard TG/Fl'-IR instrument. The sample is 
suspended from a balance in the furnace, and, as the sample is pyrolyzed, the evolving 
species a re  swept into the  FF-IR gas cell. The instrument was modified to include an 
oxidation mne before the gas cell. 
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Figure 2. Examples of SIMCA analysis for TG/FT-IR rum of a) uncontaminated lubricant 
and b) lubricant with 5% polydimethyl siloxane. The raw spectra from the run are shown 
on the left, and the residual spectra resulting from projection onto the primary factors are 
shown on the right (note the expanded scale). 
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Figure 3. Results of SIMCA analysis for contamination in used synthetic lubricants. The 
F-values are plotted versus time for TGIFT-IR runs of lubricant samples contaminated with 
various fluids likely to be encountered at  an Air Force base. 
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Figure 4. Neural network based prediction of chlorinated contaminants evolving 
during TG/FT-IFt runs. A value of 1.0 indicates the presence of contaminant and -1.0 
indicates the absence of contaminant. a) uncontaminated Mobil23699; b) trichlom- 
ethylene contaminated Mobil23699; c) dichloromethane contaminated Mobil23699. 
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Figure 5. Spectra obtained during TWsecondary oxidation/FT-IR analysis of a 41.2 mg 
sample of lubricant spiked with 0.63% o-DCB. The scale is expanded in the plot on the 
right to show the evolution of HC1. 
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